Hydrodynamical adaptive mesh refinement simulations of turbulent flows - II . Cosmological simulations of galaxy clusters
نویسنده
چکیده
The development of turbulent gas flows in the intra-cluster medium and in the core of a galaxy cluster is studied by means of adaptive mesh refinement (AMR) cosmological simulations. A series of six runs was performed, employing identical simulation parameters but different criteria for triggering the mesh refinement. In particular, two different AMR strategies were followed, based on the regional variability of control variables of the flow and on the overdensity of subclumps, respectively. We show that both approaches, albeit with different results, are useful to get an improved resolution of the turbulent flow in the ICM. The vorticity is used as a diagnostic for turbulence, showing that the turbulent flow is not highly volume-filling but has a large area-covering factor, in agreement with previous theoretical expectations. The measured turbulent velocity in the cluster core is larger than 200 km s, and the level of turbulent pressure contribution to the cluster hydrostatic equilibrium is increased by using the improved AMR criteria.
منابع مشابه
Hydrodynamical adaptive mesh refinement simulations of turbulent flows - I . Substructure in a wind
The problem of the resolution of turbulent flows in adaptive mesh refinement (AMR) simulations is investigated by means of 3D hydrodynamical simulations in an idealised setup, representing a moving subcluster during a merger event. AMR simulations performed with the usual refinement criteria based on local gradients of selected variables do not properly resolve the production of turbulence down...
متن کاملCosmological Shocks in Adaptive Mesh Refinement Simulations and the Acceleration of Cosmic Rays
We present new results characterizing cosmological shocks within adaptive mesh refinement NBody/hydrodynamic simulations that are used to predict non-thermal components of large-scale structure. This represents the first study of shocks using adaptive mesh refinement. We propose a modified algorithm for finding shocks from those used on unigrid simulations that reduces the shock frequency of lo...
متن کاملMARCOS, a numerical tool for the simulation of multiple time-dependent non-linear diffusive shock acceleration
We present a new code aimed at the simulation of diffusive shock acceleration (DSA), and discuss various test cases which demonstrate its ability to study DSA in its full time-dependent and non-linear developments. We present the numerical methods implemented, coupling the hydrodynamical evolution of a parallel shock (in one space dimension) and the kinetic transport of the cosmic-rays (CR) dis...
متن کاملTurbulent gas motions in galaxy cluster simulations: The role of SPH viscosity
Smoothed particle hydrodynamics (SPH) employs an artificial viscosity to properly capture hydrodynamical shock waves. In its original formulation, the resulting numerical viscosity is large enough to suppress structure in the velocity field on scales well above the nominal resolution limit, and to damp the generation of turbulence by fluid instabilities. This could artificially suppress random ...
متن کاملAdaptively Refined Large Eddy Simulations of a Galaxy Cluster: Turbulence Modeling and the Physics of the Intra-cluster Medium
We present a numerical scheme for modelling unresolved turbulence in cosmological adaptive mesh refinement codes. As a first application, we study the evolution of turbulence in the intra-cluster medium and in the core of a galaxy cluster. Simulations with and without subgrid scale model are compared in detail. Since the flow in the ICM is subsonic, the global turbulent energy contribution at t...
متن کامل